

Validation of a numerical simulation system for gas diffusion in an Urban Area

*Ryohji Ohba, Tomohiro Hara, Jiro Yoneda: Mitsubishi Heavy Industries, Japan Julian Hunt, David Carruthers: Cambridge Environmental Research Consultant, UK Rex Britter: Senseable City Laboratory, MIT, USA E-mail ryohji_ohba@mhi.co.jp (This project is sponsored by Ministry of Education, Culture, Sports, Science and Technology in Japan (MEXT)

Project leader: Prof. Shinsuke Kato

Main organization: Tokyo university

Subtheme-1: Ryohji Ohba (MHI)

• Development of an advanced prediction system for atmospheric diffusion

Subtheme-2: Masatoshi Nihei(AdvanceSoft)

• Development of a practical prediction system for diffusion in enclosed space

Subtheme-3: Shinsuke Kato (Tokyo university)

*Verification test for the prediction system for atmospheric diffusion

Related project: Development of an identification method for contaminant source

Subtheme-4: Tomohisa Yamashita (AIST)

Development of an evacuation assist system

Cooperaing organizations: Tokyo Metropolis, NPO et al.

Sub theme	2007	2008	2009	
1) Prediction system for atmospheric diffusion	High-speed computing system	Validation of the system with field experimental data	Evaluation of total system with	
2) Prediction system for diffusion in an enclosed space	Base system, Add sub-models	Make-up and Validation of the system	response drill by	
3) Verification Test	Wind Tunnel Experiment	Full-Scale Experiment	Tokyo Metropolis	
4) Development of an evacuation assist system	Development of the integrated system	Validation of the evacuation assist system		
Annual target	Development of fundamental technology	Validation of each technology	Evaluation of the total system	

Hazardous gas dispersion simulator

4

Hazardous gas dispersion simulator

Database Computing Scheme for Air Flow

Model	100 m <	100 m >	Total
Present model	Few min.	Few sec	Few min.
Conventional	10 min.	200 min.	Few hrs

Comparison of wind speed profile

- Wind Tunnel Experiment
 - —RAMS (Ver.4.3 with Drag force term)
- RAMS (Ver.5.0 with the improved building scheme

Evaluation of wind field by VDI

			Hit-rate q (%)		
	x/H	u-component	w-component	ТКЕ	
Upstream	- 1.66	84.6	92.3	0.0	
	- 1.18	92.3	92.3	16.7	
above the obstacle	- 0.40	85.7	42.8	25.0	
	- 0.24	71.4	42.8	14.3	
	- 0.08	85.7	71.4	25.0	
	+ 0.08	85.7	71.4	37.5	
	+ 0.24	100.0	57.1	42.8	
	+ 0.40	85.7	28.6	71.4	
Downstream	+0.48	71.4	92.3	8.3	
	+ 0.96	38.4	69.2	8.3	
	+ 1.20	15.3	69.2	8.3	
	+ 1.44	15.3	69.2	25.0	
	+ 1.68	30.1	84.6	25.0	
	+ 1.92	30.1	69.2	25.0	
	+ 2.16	23.1	92.3	30.1	

The German VDI Guideline (2005) fixed the minimum limit for validation at q > 66%

 $q(\%) = \frac{100}{n} \sum_{i=1}^{n} N_i \qquad N_i = \begin{cases} 1, \text{ if } \left| \frac{P_i - Obs_i}{Obs_i} \right| < RD \text{ and } \left| P_i - Obs_i \right| < AD \end{cases} \qquad \begin{array}{c} \text{RD (relation in the second seco$

RD (relative discrepancy) = 0.25, and AD (absolute discrepancy) = 0.05

7

Comparison of gas concentration

Evaluation of gas concentration by EU/COST-732

		K (HYPACT)		K (ADMS 1S)		K (ADMS 22S)	
		FAC2 (%)	FB	FAC2 (%)	FB	FAC2 (%)	FB
	z/H						
	0.12	100.0	-0.54	0.0	1.98	0.0	1.98
<i>x</i> /H = 0.408	0.20	100.0	-0.25	0.0	1.85	0.0	1.85
	0.52	100.0	-0.21	100.0	0.24	0.0	0.49
	1.0	100.0	-0.19	50.0	0.89	50.0	1.26
	x/H						
	0.00	71.4	0.61	0.0	-1.55	5.0	-1.85
y/H = 0.0	0.16	100.0	-0.08	0.0	-1.61	45.2	-1.80
	0.48	81.0	0.69	80.0	0.84	60.0	1.06
	0.60	81.3	0.30	63.3	-0.41	54.0	1.11
	0.72	75.0	0.14	100.0	-0.84	66.6	0.64
	1.08	85.7	0.30	41.6	-1.31	83.0	0.31
	0.00	71.4	0.61	0.0	-1.55	5.0	-1.85
	0.16	100.0	-0.08	0.0	-1.61	45.2	-1.80

FAC2 > 54% indicates a satisfactory model performance(COST-732)

Comparison of gas concentration in Tokyo

Comparison of gas concentration in Oklahoma

(a) Simulation of IOP4

(b) Comparison of gas concentration by diameter of circle (red: simulation,

black: observation)

計算濃度 Cp[ppm]

(c) Observed and predicted

• Category of database: 16 wind directions, 3 stabilities (Neutral, stable and unstable)

data with fine mesh <100m

Round table drill

Table 1 Emergency response items (Ref; US National Research Council report)

R	lesponse items	Time	Action plan
Pre-test	Drill	Routine	Imaginary scenario →round table drill→working drill
Actual	Emergency response	0-2 hours	Prediction of source terms
accident	Initial stage	2 – 12 hours	Making an evacuation plan based on real time simulation
	Second stage	12 – 24 hours	Decision making for recovery timing
	Recovery action	1 – few days	Detail reproduction of the public hazard 14

