高性能磁場解析システム REVOCAP_Magnetic

九州大学大学院 金山 寛

■ 特徴

- 非線形静磁場問題 および 時間調和渦電流問題の有限 要素解析
- 階層型領域分割法(Hierarchical Domain Decomposition Method: HDDM)による, 負荷分散を行った並列処理
- 大規模解析
 - 5,000万自由度の非線形静磁場解析が約8時間半(32並列)
 - 4,400万複素自由度(実質約9,000万自由度)の時間調和渦電流解 析が5時間弱(32並列)

3

REVOCAP_Magnetic Ver.0.2b (機能)

■ 非線形静磁場解析

- 強磁性体の非線形特性を 考慮
- 定式化
 - A法
- 非線形反復手法
 - Newton法
 - Picardの逐次近似法
- 結果出力
 - 磁束密度B([T] or [G])また
 は磁場H([A/m] or [A/mm])

TEAM Workshop Problem 20 メッシュ図

■ 時間調和渦電流解析

- 交流電流を扱うことに特化
 した手法
- 定式化
 - A法
 - A-*ϕ*法
- 結果出力

Z成19年2月5日

- 磁束密度B([T] or [G])また
 は磁場H([A/m] or [A/mm])
- 渦電流密度Je([A/m²] or [A/mm²])

5

■ 階層型領域分割法

(Hierarchical Domain Decomposition Method: HDDM)

- インターフェース問題
- 反復型領域分割法

(Iterative Domain Decomposition Method)

■ 階層型領域分割法

平成19年2月5日

6

1000

成10年2日5日

9

end;

の部分は各部分領域で独立に計算 可能であり,並列化が容易 この部分の計算が全体の9割以上を占 めるため,高い並列化効率を得やすい

成10年2日5日

for n = 0.1.....: In each subdomain Compute $p_I^{(i)n}$ by $K_{II}^{(i)}p_{I}^{(i)n} = -K_{IB}^{(i)}R_{B}^{(i)T}p^{n};$ $q^{(i)n} = K_{IB}^{(i)T} p_{I}^{(i)n} + K_{BB}^{(i)} R_{B}^{(i)T} p^{n};$ $q^{n} = \sum^{n} R_{B}^{(i)} \overline{q^{(i)n}};$ $\alpha^n = \left(r^n\right)^H r^n / \left(p^n\right)^H q^n ;$ $u_B^{n+1} = u_B^n - \alpha^n p^n;$ $r^{n+1}=r^n-\alpha^n q^n;$ If $||r^{n+1}|| \langle \delta ||r^0||$, break; $\beta^{n} = (r^{n+1})^{H} r^{n+1} / (r^{n})^{H} r^{n} ;$ $p^{n+1} = r^{n+1} + \beta^n p^n$;

■ 階層型領域分割法

- 反復型領域分割法を効率よ〈並列計算機環境に実装するための手法
- 計算対象を2段階の階層型に分割する
- 最適分割数を取りやすい
- 部分領域数がプロセッサ数より十分に大きくなるので、負荷分散が容易

■ 大規模非線形静磁場解析

平成**19**年2月5日

11

■ 大規模非線形静磁場解析

TEAM Workshop Problem 20

	alamanta	DOE	aubdomaina	DOF
	elements	DOF	subuomams	on interface
team20(1)	4,412,706	5,174,146	32 x 1,400	2,232,789
team20(2)	8,802,084	10,298,638	32 x 2,800	4,464,623
team20(3)	17,931,856	20,941,837	32 x 5,600	9,067,744
team20(4)	26,813,542	31,286,845	32 x 8,400	13,592,967
team20(5)	34,917,602	40,722,854	32 x 11,200	17,782,606
team20(6)	43,141,979	50,295,288	32 x 14,000	22,063,800

平成19年2月5日

■ 大規模非線形静磁場解析

• TEAM Workshop Problem 20

	iteration counts (Newton method)	CPU time [s]	Memory per CPU [MB]
team20(1)	2	2,048	64.9
team20(2)	2	4,348	129
team20(3)	2	9,826	262
team20(4)	2	16,441	392
team20(5)	2	23,337	512
team20(6)	2	31,111	633

PC cluster: Pentium 4 3.0GHz x 32 13

平成19年2月5

大規模時間調和渦電流解析 ケーキモデル

Z成19年2日5日

DOF DOF subdomains elements on interface cake(1)4,310,648 5,472,186 32 x 1,250 2,360,218 cake(2)8,788,303 11,098,344 32 x 2,500 4,812,371 17,065,354 21,470,601 32 x 5,000 9,449,410 cake(3)25,917,735 32,537,036 cake(4)32 x 7,500 14,323,419 34,814,775 43,546,445 32 x 10,000 19,110,895 cake(5)

■ 大規模時間調和渦電流解析

• ケーキモデル

	iteration counts	CPU time [s]	Memory per CPU [MB]
cake(1)	460	1,210	115
cake(2)	570	2,898	233
cake(3)	735	6,789	512
cake(4)	891	12,400	685
cake(5)	935	17,228	913

PC cluster: Pentium 4 3.0GHz x 32

熱との連成問題

- 解析対象: 変圧器全体
- コイル(U相,V相,W相),鉄心,シールド,タンクより構成
- コイル:各相流れる電流の大きさ,方向が異なる三重の巻き線から成り,各相において電流の総和は0[A]

	U相 V相		W相		
内側	-159.3+0.0 <i>i</i>	79.7-138.0 <i>i</i>	79.7+138.0 <i>i</i>		
中側	-303.6+0.0 <i>i</i>	151.8-262.9 <i>i</i>	151.8+262.9 <i>i</i>		
外側	462.9+0.0 <i>i</i>	-231.5+400.9 <i>i</i>	-231.5-400.9 <i>i</i>		

熱との連成問題

- 時間調和渦電流解析
 - シールド間の隙間に対応する部分に発生
 - 「ポケット部」の角にも比較的大きな渦電流が発生
 - 渦電流密度の最大値: 9.699 × 10³ [A/m²]

■ 熱との連成問題

- 熱伝導解析
 - 温度の高い部分と電流密度の高い部分が対応
 - シールド間の隙間に対応する部分に高温部分
 - 「ポケット」部の渦電流に対応した部分にも高温部

終わりに

■ 機能拡張・高速化を順次行っていく

- 磁場解析以外の解析ソフトウェアとのインターフェース整備
- 実証問題を使った連成解析

平成19年2月5日